

Overview of the Airline Planning Process Dr. Peter Belobaba Presented by Alex Heiter

Istanbul Technical University

Air Transportation Management

M.Sc. Program

Network, Fleet and Schedule
Strategic Planning

Module 6: 29 March 2016

Lecture Outline

Basic Airline Profit Model

Fundamental Strategies to Improve Profitability

Airline Planning Decisions

- Fleet Planning
- Route Evaluation
- Schedule Development
- Pricing and Revenue Management
- Operations Control

Airline Organizational Structure

Basic Airline Profit Model

Operating Profit = Revenues - Operating Expense

Operating Profit = RPK x Yield - ASK x Unit Cost

- Use of individual terms in this profit equation to measure airline success can be misleading:
 - High Yield is not desirable if ALF is too low; in general, Yield is a poor indicator of airline profitability
 - Low Unit Cost is of little value if Revenues are weak
 - Even ALF on its own tells us little about profitability, as high ALF could be the result of extremely low fares (yields)
- Profit maximizing strategy is to increase revenues, decrease costs, but the above terms are interrelated.

Strategies to Increase Revenues

Increase Traffic Carried (RPKs):

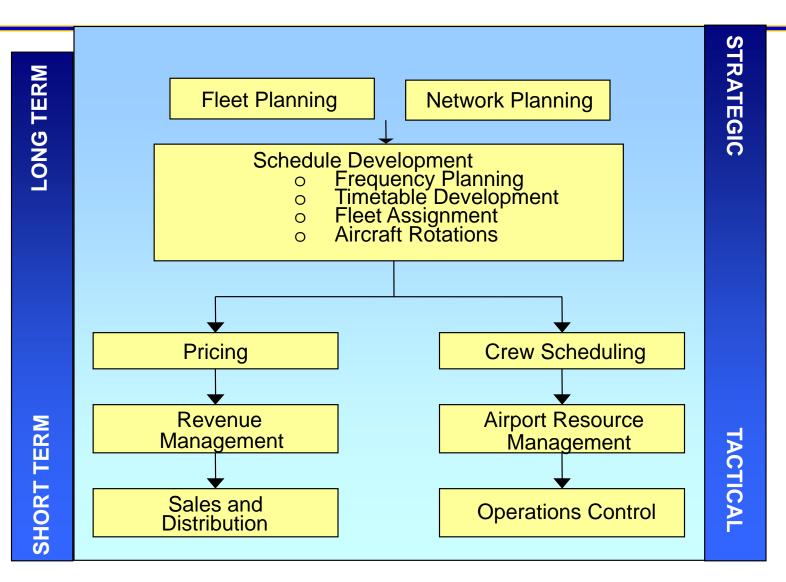
- Reduce fares (average yields) to stimulate traffic, but revenue impact depends on demand elasticity
- For revenues to increase, price cut must generate disproportionate increase in total demand (i.e., "elastic demand")
- Alternatively, frequency or service quality can be increased to attract passengers, but both actions also increase operating costs

Increase Fares (Yields):

Economic theory tells us any price increase will lead to an inevitable traffic decrease, but a price increase can still be revenue positive if demand is "inelastic" (i.e., percent decrease in passengers is lower than percent increase in price).

Strategies to Reduce Costs

Reduce Unit Costs (Cost per ASK):


- Reduce service quality, but too many cuts can affect consumers' view of the airline's product, leading to a reduced RPKs and market share
- Increase ASKs by flying more flights and larger airplanes, which can lower unit costs but lead to higher total operating costs and lower load factors

Reduce Airline Output (Decrease ASKs):

- Cutting back on number of flights will reduce total operating costs, but lower frequencies lead to market share losses (lower RPKs)
- Reduced frequencies and/or use of smaller aircraft can result in higher unit costs, as fixed costs are spread over fewer ASKs.

Airline Planning Decisions

- 1. FLEET PLANNING: What aircraft to acquire/retire, when and how many?
- 2. ROUTE EVALUATION: What route structure to operate and city-pairs to be served?
- 3. SCHEDULE DEVELOPMENT: How often, at what times and with which aircraft on each route?
- 4. PRICING: What products, fares and restrictions for each O-D market?
- 5. REVENUE MANAGEMENT: How many bookings to accept, by type of fare, to maximize revenue over the network?
- 6. OPERATIONS CONTROL: Implementing planned schedule of operations, given airport and air traffic control constraints.

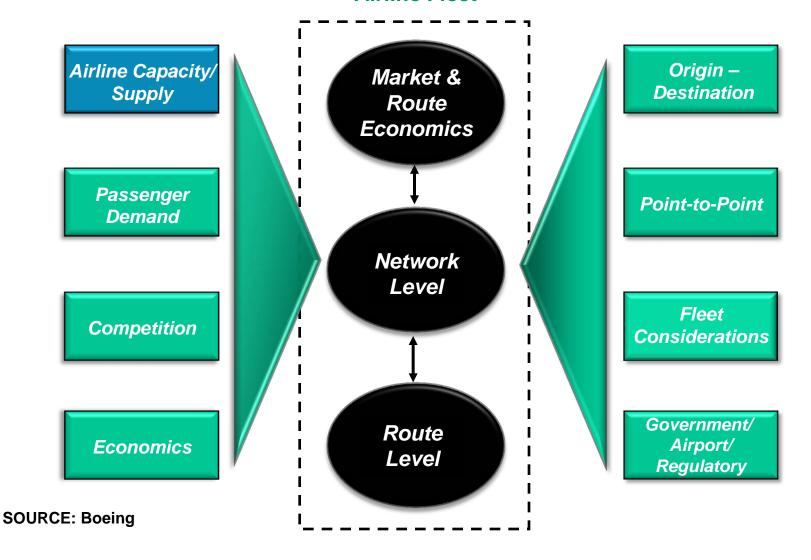
Types of Decision

1. FLEET PLANNING

Fleet composition is long-term strategic decision and largest capital investment for an airline

 Affects financial position, operating costs, and especially the ability to serve specific routes.

Economics of fleet choice


- Lower operating costs vs. higher ownership costs of new aircraft
- Lower trip costs of smaller aircraft vs. lower unit costs (CASK) and greater revenue generation of larger aircraft

Fleet evaluations depend on aggregate analysis

- Detailed network profitability models seldom used given tremendous uncertainty of future demand, costs, competition
- "Top-down" economic and financial impacts evaluated with spreadsheets, NPV analysis and scenario-building

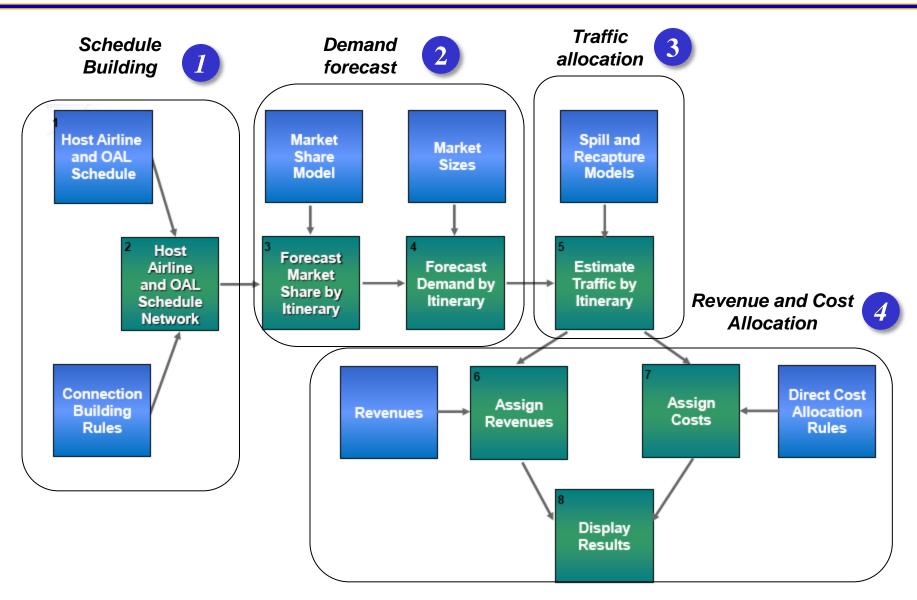
Network & Fleet Planning Decisions Include a Wide Range of Factors

Airline Fleet

2. ROUTE EVALUATION

Given a fleet, determination of routes to be flown

Network structure (hub/spoke, point-to-point or hybrid)


Evaluation approach at a disaggregate (route) level:

- Demand, market share and revenue forecasts required for specific route, perhaps for multiple years into the future
- Aircraft performance and operating cost characteristics

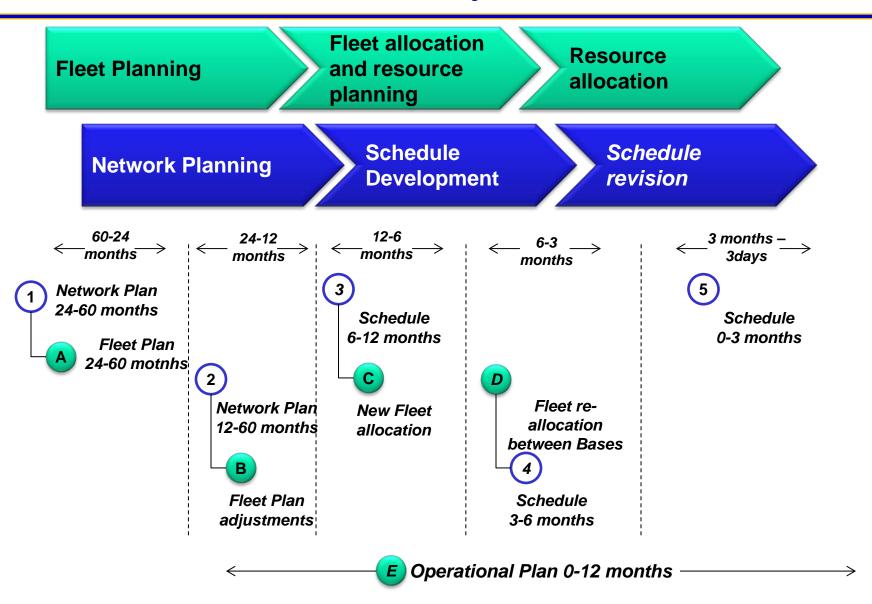
Route planning decision factors

- Availability of aircraft with adequate range and capacity link to fleet plan and overall network strategy
- Operational constraints and aircraft/crew rotation issues
- Regulations, bilaterals, and limited airport slots
- Opportunity cost of using aircraft on this route
- Degree of competition and expected competitive response

Example: Airline "Profit Manager"

3. SCHEDULE DEVELOPMENT

 Involves several interrelated decisions, which to date have not been fully integrated:


<u>Frequency Planning</u>: Number of departures to be offered on each route, non-stop versus multi-stop

<u>Timetable Development</u>: Flight departure and arrival times, including connections at airline hubs

<u>Fleet Assignment</u>: Aircraft type for each flight, based on demand and operating cost estimates

<u>Aircraft Rotation Planning</u>: Links consecutive flights to ensure balanced aircraft flows on the network.

Integrated Scheduling Planning Process: Key Decisions

4. PRICING DECISIONS

"Differential pricing" by airlines is universal:

- Different "fare products" within the coach cabin, with different restrictions, at different prices
- Virtually every airline in the world offers multiple price points (even low-fare carriers with "simplified" fare structures)

"Pricing Decision Support Systems"

- Difficult to estimate price elasticity, willingness to pay, potential for stimulation and diversion
- No practical tools for airlines to determine "optimal" prices
- Primarily monitoring of competitive price changes
- Dominant practice is still to match low fares to fill planes and retain market share
 - Need to match exacerbated by web sites and search engines

BOS-IST Economy Class Fare Structure Turkish Airlines, April 2015

Class	One Way Fare	Advance Purchase	Minimum Stay	Change Fee	Refunds	RT Required
Y	\$1072	None	None	None	Yes	No
В	\$934	None	None	None	Yes	No
M	\$725	0/3 (TKT)	Sat Night	\$135	No	Yes
Н	\$612	0/3 (TKT)	Sat Night	\$135	No	Yes
S	\$512	0/3 (TKT)	Sat Night	\$135	No	Yes
E	\$425	0/3 (TKT)	Sat Night	\$135	No	Yes
Q	\$350	0/3 (TKT)	Sat Night	\$135	No	Yes
L	\$238	0/3 (TKT)	Sat Night	\$135	No	Yes

5. REVENUE MANAGEMENT

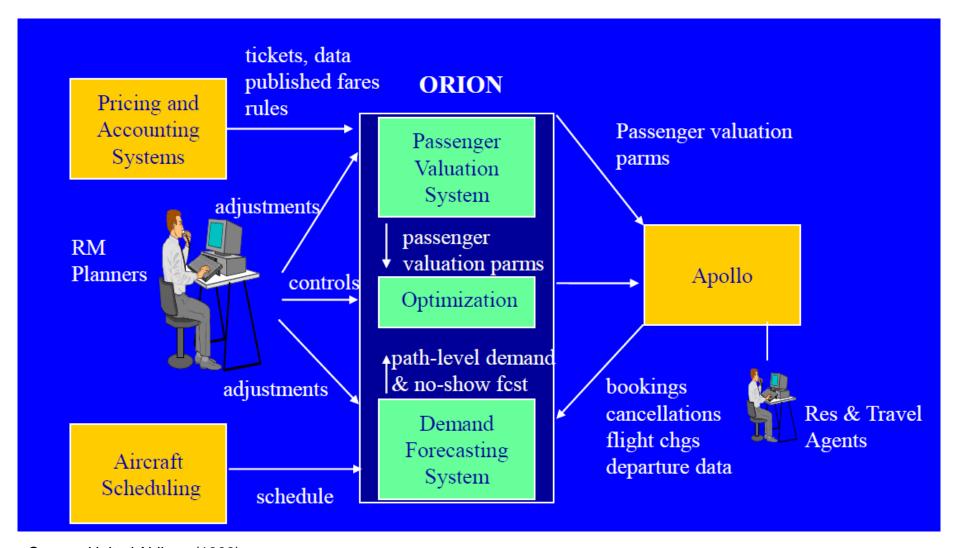
Seat inventory control to maximize revenues

- Given a scheduled flight, capacity and prices, how many bookings to accept by fare type
- Objective is to maximize revenue -- fill each seat with highest possible revenue

Computerized RM systems based on demand forecasting and revenue optimization:

- Leg-based RM systems increase revenues by 4-6%
- Network RM systems more sophisticated, add another 1-2%

Recent industry developments affect RM systems

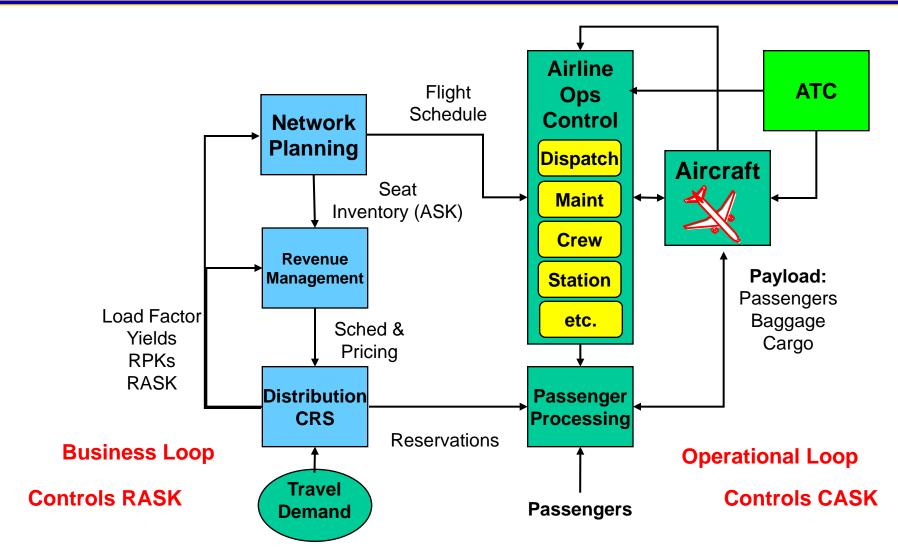

- Fare simplification and "fare family" bundling require new approaches to forecasting and optimization
- Alliance code-share traffic complicates both RM and distribution

RM Strategy Affects Yield, Load Factor Average Fare and Revenues

EXAMPLE: 3,380km FLIGHT LEG CAPACITY = 200

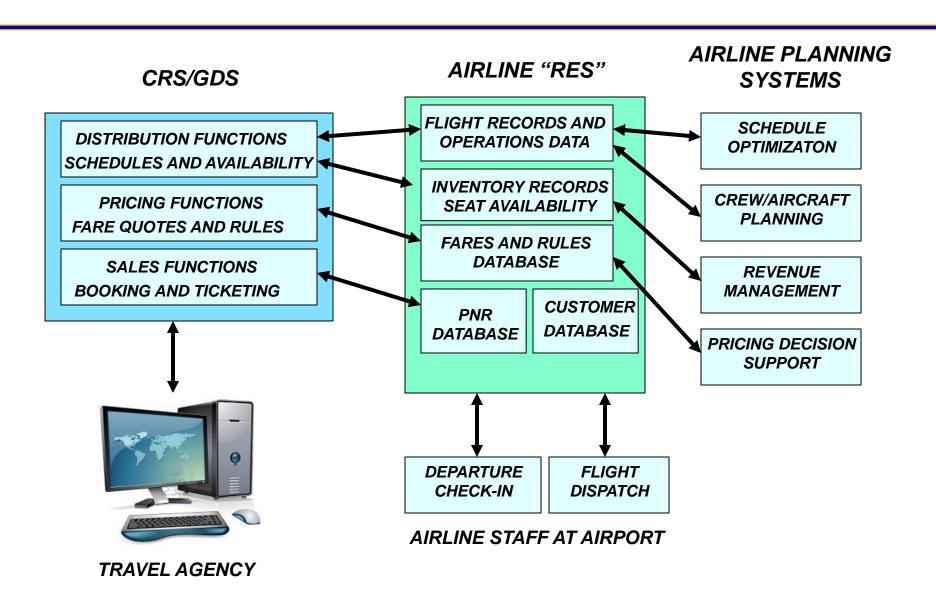
NUMBER OF SEATS SOLD:								
FARE	AVERAGE	YIELD	LOAD FACTOR	REVENUE				
CLASS	REVENUE	EMPHASIS	EMPHASIS	EMPHASIS				
Y	\$420	20	10	17				
B	\$360	23	13	23				
H	\$230	22	14	19				
V	\$180	30	55	37				
Q	\$120	15	68	40				
] 	TOTAL PASSENGERS LOAD FACTOR TOTAL REVENUE AVERAGE FARE YIELD (CENTS/RPK)	110 55% \$28,940 \$263 7.78	160 80% \$30,160 \$189 5.59	136 68% \$31,250 \$230 6.80				

Example: Network RM System Components



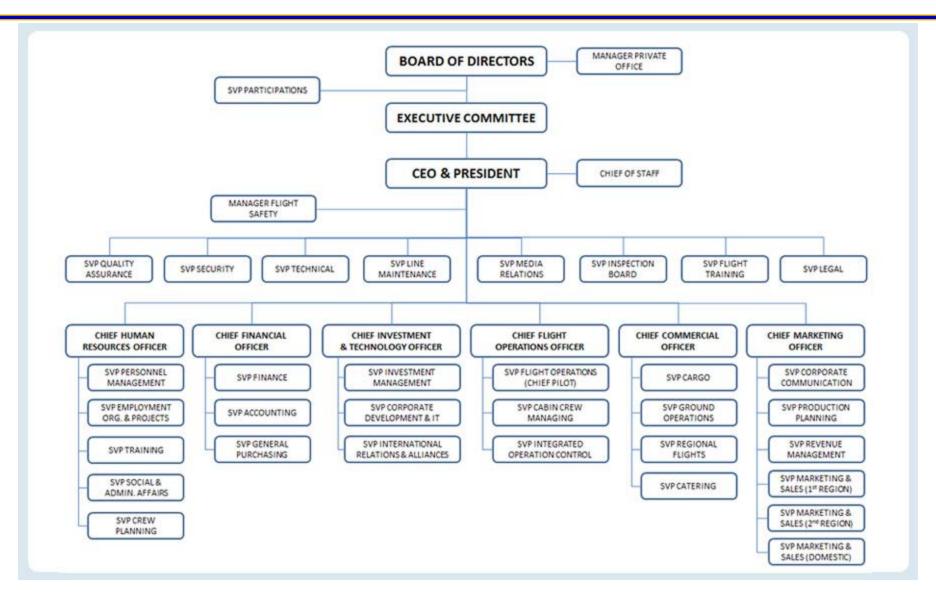
Source: United Airlines (1999)

6. OPERATIONS CONTROL


- Coordinate the daily operations of the airline on a dynamic basis.
- Ensure completion of schedule plan within company goals for on-time performance and safety.
- Process passengers, baggage and cargo subject to numerous operational constraints:
 - Limited number of gates, many with constraints on aircraft size
 - Airport flow limitations on taxiways and runways
 - Availability of airport and ground crew resources
 - Weather (both local and en route) as well as airport field conditions
 - Air traffic control (ATC) congestion and delays

Airline Planning and Operations

Source: Prof. John Hansman


IT Systems: Planning and Distribution

Integrated Airline Planning Models

- Current practice is to perform scheduling, pricing and RM sequentially.
- Integrated models would jointly optimize schedules, capacity, prices, and seat inventories:
 - Better feedback from pricing and RM systems can affect optimal choice of schedule and aircraft
 - Better choice of schedule and capacity can reduce need for excessive discounting and "fare wars"
- Joint optimization and planning is a big challenge:
 - Research is still required to identify models that can capture dynamics and competitive behaviors
 - Organizational coordination within airlines and willingness to accept large-scale decision tool

Example: Airline Organizational Structure

